МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МУРМАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

УТВЕРЖДАЮ Директор ИАТ ФГБОУ ВО «МГТУ» M.B. Bacëxa подпись Табоктинеских С 2019 год технологий

РАБОЧАЯ ПРОГРАММА

Дисциплина

Б1.Б.48 Гидромеханика многофазных сред

код и наименование дисциплины

Направление подготовки/специальность

21.05.05 Физические процессы горного или нефтегазового производства

код и наименование направления подготовки /специальности/

Направленность/специализация

специализация № 2 «Физические процессы

нефтегазового производства»
наименование направленности (профиля) /специализации образовательной программы

Квалификация выпускника специалист

указывается квалификация (степень) выпускника в соответствии с ФГОС ВО

Кафедра-разработчик

кафедра морского нефтегазового дела наименование кафедры-разработчика рабочей программы

Лист согласования

1. Разработчик(и)		
к.ф-м.н., доцент каф. МНГД	m	Боголюбов А.А.
должность	подпись	И.О.Фамилия

2. Рассмотрена и одобрена на заседании кафедры-разработчика рабочей программы Морского нефтегазового дела, протокол № 9/18.

18.06.2019 г.

Васёха М.В. Ф.И.О. заведующего кафедры – разработчика

Аннотация рабочей программы дисциплины

Коды	Название	Краткое содержание
циклов	циклов,	(Цель, задачи, содержание разделов дисциплины,
дисциплин,	разделов,	реализуемые компетенции, формы промежуточного
модулей,	дисциплин,	контроля, формы отчетности)
практик	модулей, практик	
1	2	3
Б1.Б.49	«Гидромеханика	Целью дисциплины «Гидромеханика
	многофазных сред»	многофазных сред» является формирование компетенций
		(части компетенций) в соответствии с ФГОС по
		специальности 21.05.05 Физические процессы горного
		или нефтегазового производства и учебным планом для
		направления подготовки/специальности 21.05.05
		Физические процессы горного или нефтегазового
		производства, специализации №2 Физические процессы
		нефтегазового производства
		Задачи дисциплины: дать необходимые знания о
		макроскопических характеристиках пластов и
		насыщающих их флюидов на основе модели многофазных взаимопроникающих континуумов и
		многофазных взаимопроникающих континуумов и представления о структурных моделях пористых сред.
		В результате изучения дисциплины специалист
		должен:
		знать: - основные определения, понятия и законы
		фильтрации жидкостей и газов сквозь пористую среду.
		- фильтрационно-емкостные свойства пористых
		сред
		- процесс мицеллярно-полимерного заполнения
		водой (заводнения) нефтяного пласта.
		уметь:
		- четко ориентироваться в вопросах, касающихся
		физических процессов, происходящих при добыче
		нефти и газа ;
		делать численные оценки фильтрационных
		параметров;
		решать уравнения фильтрации для различных моделей, оценивать свободный дебит газоконденсатной
		скважины;
		-составлять простейшие физико-математические
		модели для определения динамических характеристик
		потоков жидкости и газа при бурении и добыче;
		обладать:
		- пониманием физических процессов,
		происходящих при добыче нефти и газа и последствий
		взаимодействия последних с окружающей средой на
		поверхности;
		- навыками решения уравнений фильтрации
		флюидов, а также постановки и решения краевых задач
		для оценки дебита;
		Содержание разделов дисциплины:
		Макроскопические характеристики пластов и
		насыщающих флюидов на основе модели многофазных

взаимопроникающих континуумов. Структурные модели пористых сред. Определения и понятия фильтрации жидкостей и газов. Математические модели фильтрации сжимаемой и несжимаемой жидкости. Одномерные установившиеся фильтрации несжимаемой жидкости и газа в однородной и неоднородной пористой среде и их потоки. Неустановившееся движение упругой жидкости в упругом пласте. Свободный дебит газоконденсатной скважины.

Реализуемые компетенции ОПК-4, ПК-15

Формы промежуточной аттестации:

Очная форма обучения: семестр 7 – зачет с оценкой.

Пояснительная записка

- 1. Рабочая программа составлена на основе ФГОС ВО по специальности 21.05.05 Физические процессы горного или нефтегазового производства (специализация №2: Физические процессы нефтегазового производства), утвержденного Министерством образования и науки РФ 12.09.2016, № 1156, учебного плана в составе ОПОП по специальности 21.05.05 Физические процессы горного или нефтегазового производства (специализация №2: Физические процессы нефтегазового производства) 2017 года начала подготовки.
- 2. Целью дисциплины «Гидромеханика многофазных сред» является формирование компетенций (части компетенций) в соответствии с ФГОС по специальности 21.05.05 Физические процессы горного или нефтегазового производства и учебным планом для направления подготовки/специальности 21.05.05 Физические процессы горного или нефтегазового производства, специализации №2 Физические процессы нефтегазового производства

Задачи дисциплины: дать необходимые знания о макроскопических характеристиках пластов и насыщающих их флюидов на основе модели многофазных взаимопроникающих континуумов и представления о структурных моделях пористых сред.

3. Планируемые результаты обучения в рамках данной дисциплины

Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО по направлению подготовки/специальности 21.05.05 Физические процессы горного или нефтегазового производства:

Таблица 2 – Планируемые результаты обучения

№	Код компетенции	Компоненты	
п/п		компетенции, степень их	Результаты обучения
		реализации	
1	ОПК-4: готовность с	Компоненты компетенции	Знать: Основные научные
	естественно-	соотносятся с	физические и геофизические
	научных позиций	содержанием	положения и законы, при геолого-
	оценить строение,	дисциплины, и	промышленной оценке
	химический и	компетенция реализуется	месторождений полезных
	минеральный состав	в части знания	ископаемых (необходимость их
	горных пород,	методов	добычи и природно-экологический
	слагающих земную	фундаментальных и	ущерб наносимый при этом).
	кору,	прикладных наук,	Основные положения механики
	морфологические	используемых при оценке	сплошной среды, емкостные
	особенности и	типа месторождения и	свойства пористых сред основные
	генетические типы	решения задачи по	определения, понятия и законы
	месторождений	рациональному и	движения жидкостей и газов при
	полезных	комплексному освоению	значительных давлениях в условиях
	ископаемых при	георесурсного потенциала	существенно ниже уровня моря.
	решении задач по	недр на суше, на шельфе	Уметь:
	рациональному и	морей и на акваториях	- использовать знание законов
	комплексному	мирового океана.	физики, четко ориентироваться в
	освоению		вопросах, касающихся движения
	георесурсного		жидкости и газа, делать численные
	потенциала недр на		оценки параметров, решать
	суше, на шельфе		уравнения, составлять простейшие
	морей и на		физико-математические модели и
	акваториях		решать краевые задачи для
	мирового океана.		определения динамических
			характеристик потоков жидкости и

газа на значительных глубинах ниже уровня моря. Владеть: - навыками физико-математического моделирования процессов, происходящих в сплошных средах при изменении внешних воздействий. ПК-15: готовность Компоненты Знать: физико-математические изучать влияние компетенции соотносятся методы оценки величин термодинамических параметров при свойств с содержанием разрабатываемых дисциплины, и изменении условий; горных пород и компетенция реализуется Уметь: использовать имеющиеся параметров в части знания и применять физиковоздействующих на изучения влияния свойств математический аппарат для них различных разрабатываемых пород и решения расчетно-аналитических физических полей на параметров задач с целью совершенствования воздействующих на них технологических процедур, показатели технологических различных физических осуществляемых с углеводородным процессов добычи и полей на показатели сырьем. Владеть: навыками физикопереработки технологических полезных процессов добычи математического моделирования ископаемых, в том углеводородных процессов и хотя бы одной из числе при освоении флюидов, в том числе при математических сред (Mathematica, освоении ресурсов Excel) для решения численной ресурсов шельфа морей и океанов, а шельфа морей и океанов, задачи. также при ведении а также при ведении работ по работ по строительству и эксплуатации подземных строительству и эксплуатации сооружений. подземных сооружений, совершенствовать существующие и разрабатывать новые ресурсосберегающие и экологически безопасные технологии добычи и переработки минерального сырья, строительства и эксплуатации подземных сооружений.

4. Структура и содержание учебной дисциплины (модуля). Таблица 3 - Распределение учебного времени дисциплины Общая трудоемкость дисциплины составляет <u>3</u> зачетных единиц, <u>108</u> часа.

Распределение трудоемкости дисциплины по формам									
	обучения								
Вид учебной нагрузки	O	чная	Заочная						
2.0	Семестр	Doore ween	Курс	Doore weep					
	7	Всего часов		Всего часов					
Аудиторные часы									
Лекции	18	18							
Практические занятия	34	34							
Лабораторные работы	-	-							
Часы на самосто	оятельную и	контактную раб	боту						
Выполнение, консультирование,									
защита курсовой работы (проекта)									
Прочая самостоятельная и	56	56							
контактная работа	30	30							
Подготовка к промежуточной									
аттестации									
Всего часов	108	108							
по дисциплине	108	108							
Формы промежуточного и текущего ко	нтроля								
Экзамен	-	-							
Зачет/зачет с оценкой	- /+	-/+							
Курсовая работа (проект)	-	-							
Количество расчетно-графических	1	1							
работ	1	1							
Количество контрольных работ	1	1							
Количество рефератов	-	-							
Количество эссе	-	-							

Таблица 4 - Содержание разделов дисциплины (модуля), виды контактной работы

таолица 4 - Содержание разделов дисциплины (
	Количество часов, выделяемых на виды							иды
Содержание разделов	учебной работы							
(модулей),		по формам обучения						
тем дисциплины	Очная Заочн				чная			
	Л	ЛР	ПР	CP	Л	ЛР	ПР	CP
Основные гипотезы механики сплошной								
среды. Макроскопические характеристики								
пластов и насыщающих их флюидов на основе	1	_	1	6				
модели многокомпонентных	*		1	O				
взаимопроникающих континуумов.								
· · · · · · · · · · · · · · · · · · ·								
Структурные модели пористых сред.								
Корпускулярные и капиллярные, фиктивные и	1		1	6				
идеальные модели пористой среды. Оценки	1	-	1	6				
характерных макроскопических параметров								
пористой среды.								
Основные определения и понятия								
фильтрации жидкостей и газов. Опыт и закон								
Дарси. Проницаемость. Понятие «истинной»								
средней скорости и скорости фильтрации,	1	-	2	4				
коэффициент фильтрации, коэффициент								
проницаемости вектор скорости фильтрации и								
градиент фильтрационного давления.								
Интегральные характеристики сплошной								
среды и законы сохранения.								
Фундаментальные законы природы – законы								
сохранения массы, импульса, момента	1	_	2	4				
импульса, энергии и баланса энтропии.	_		_					
Материальный (контрольный) подвижный								
объем.								
Уравнения движения сплошной среды. Уравнение притока тепла. Реологические								
1 1								
уравнения. Массовые силы. Замыкающие	2		2	4				
уравнения. Замкнутые системы. Система		-		4				
уравнений движения сплошной среды.								
Дифференциальное уравнение движения								
флюида.								
Математические модели фильтрации								
сжимаемой и несжимаемой жидкости.								
Модель фильтрации несжимаемой вязкой								
жидкости по закону Дарси в недеформируемом			_	_				
пласте. Функция Л.С. Лейбензона. Модели	1	-	4	4				
однофазной фильтрации в недеформируемом								
пласте при нелинейных законах фильтрации.								
Зависимость параметров флюидов и пористой								
среды от давления.								
Двухфазное течение в трубах. Одно и								
многокомпонентные фазы. Предположения и	2		1	4				
классификация. Уравнения законов сохранения.	2	_	4	4				
Фазовые превращения и переход массы.								
Уравнения движения двухфазной смеси в								
трубах.	2	_	4	4				
Движение установившееся, локальное								
joranobiibineesi, nokaibinee	<u> </u>	l	L			l .		

термодинамическое равновесие для объёма смеси, проходящего через сечение в единицу времени, давление и температура в обоих фазах						
одинаковы и постоянны по сечению трубы.						
Преобразование уравнений движения двухфазной смеси в трубах. Тензор поверхностных напряжений, смоченный периметр сечения трубы, истинное газосодержание, массовый приток к-фазы через поверхность.	1	-	4	4		
Режимы течений. Энтальпии газовой и жидких						
фаз, расходное газосодержание, эмпирический коэффициент гидравлического сопротивления, числа Рейнольдса, Фруда и Вебера и их физический смысл. Типы течениний для вертикальных и горизонтальных потоков.	2	1	4	4		
Свободный дебит газоконденсатной						
скважины. Возможность прогнозирования аварийных дебитов для глушения аварийного фонтана. Уравнения сохранения масс фаз и объема смеси. Уравнения для скоростей фаз и компонент.	2	-	4	4		
Уравнения состояния многокомпонентной						
жидкости. Кинетические уравнения массообмена в фильтрующейся жидкости: уравнения сорбции и десорбции примесных компонент. Вязкости растворов и микроэмульсий. Равновесная фильтрация двухфазной многокомпонентной жидкости.	1	-	2	4		
Фильтрация двухфазной смеси двух и					 	
однокомпонентных жидкостей на примере смеси воды, нефти, ПАВ и полимера. Математическое моделирование заводнения нефтяного пласта, возникновение и	1	-	2	4		
распространение фронта насыщенности.	10		2.4	5.6		
Итого:	18	-	34	56		

Таблица 5. - Соответствие компетенций, формируемых при изучении дисциплины (модуля), и видов занятий с учетом форм текущего контроля

Перечень			В	иды за	нятий		-		
компетенций	Л	ЛР	П3	КР/ КП	РГЗ	к/р	Э	CPC	Формы контроля
ОПК-4	+	-	+	-	+	+	-	+	ответы на вопросы на лекциях и практических занятиях, контрольная работа, выполнение РГР, конспект лекций и прак.
ПК-15	+	-	+	-	+	+	-	+	ответы на вопросы на лекциях и практических занятиях, контрольная работа, выполнение РГР, конспект лекций и прак.

Примечание: Π — лекции, Π P — лабораторные работы, Π P — практические работы, KP/KП — курсовая работа (проект), p — реферат, κ /p — контрольная работа, ϑ - ϑ cce, CP — самостоятельная работа, ϑ РГР — расчетно-графическая работа

Перечень лабораторных работ

Лабораторные работы не предусмотрены

Таблица 6 - Перечень практических работ

$N_{\overline{2}}$	Кол-во
Наименование практических работ	часов,
	очное
1 2	3
1 Основные гипотезы механики сплошной среды. Макроскопические	2
характеристики пластов и насыщающих их флюидов на основе модели	
многокомпонентных взаимопроникающих континуумов.	
2 Структурные модели пористых сред. Корпускулярные и капиллярные,	2
фиктивные и идеальные модели пористой среды. Оценки характерных	
макроскопических параметров пористой среды.	
3 Основные определения и понятия фильтрации жидкостей и газов.	2
Опыт и закон Дарси. Проницаемость. Понятие «истинной» средней	
скорости и скорости фильтрации, коэффициент фильтрации, коэффициент	
проницаемости вектор скорости фильтрации и градиент фильтрационного	
давления.	
4 Качественный вывод законов многофазной фильтрации из уравнений	2
сохранения сплошной среды. Интегральные характеристики сплошной	
среды и законы сохранения. Закон сохранения массы в пористой среде.	
Дифференциальное уравнение движения флюида. Система уравнений	
движения сплошной среды.	
5 Уравнения движения сплошной среды. Уравнение притока тепла.	2
Реологические уравнения. Массовые силы. Замыкающие уравнения.	
Замкнутые системы. Система уравнений движения сплошной среды.	
Дифференциальное уравнение движения флюида.	
6 Модель фильтрации несжимаемой вязкой жидкости по закону Дарси в	3
недеформируемом пласте. Функция Л.С. Лейбензона. Модели однофазной	
фильтрации в недеформируемом пласте при нелинейных законах	
фильтрации. Зависимость параметров флюидов и пористой среды от	
давления.	
7 Двухфазное течение в трубах. Одно и многокомпонентные фазы.	3
Предположения и классификация. Уравнения законов сохранения. Фазовые	
превращения и переход массы.	
8 Уравнения движения двухфазной смеси в трубах.	2
Движение установившееся, локальное термодинамическое равновесие для	
объёма смеси, проходящего через сечение в единицу времени, давление и	
температура в обоих фазах одинаковы и постоянны по сечению трубы.	
9 Преобразование уравнений движения двухфазной смеси в трубах.	2
Тензор поверхностных напряжений, смоченный периметр сечения трубы,	
истинное газосодержание, массовый приток к-фазы через поверхность.	
10 Режимы течений. Энтальпии газовой и жидких фаз, расходное	2
газосодержание, эмпирический коэффициент гидравлического	_
сопротивления, числа Рейнольдса, Фруда и Вебера и их физический	
смысл. Типы течениний для вертикальных и горизонтальных потоков.	
11 Свободный дебит газоконденсатной скважины. Возможность	2
11 Coolognom geom institution endumination Dosmontioeth	_

	Уравнения сохранения масс фаз и объема смеси. Уравнения для скоростей	
	фаз и компонент.	
12	Дифференциальное уравнение фильтрации упругой жидкости в	2
	упругой пористой среде. Одномерные фильтрационные потоки упругой	
	жидкости решения уравнения пьезопроводности.	
13	Проведение оценок параметров. Вязкости растворов и микроэмульсий.	2
	Равновесная фильтрация двухфазной многокомпонентной жидкости.	
14	Уравнения состояния многокомпонентной жидкости. Кинетические	2
	уравнения массообмена в фильтрующейся жидкости Вязкости растворов и	
	микроэмульсий. Равновесная фильтрация двухфазной многокомпонентной	
	жидкости	
15	Оценка параметров. Фильтрация двухфазной смеси двух и	2
	однокомпонентных жидкостей. Фильтрация двухфазной смеси двух	
	многокомпонентных жидкостей на примере смеси воды, нефти, ПАВ и	
	полимера.	
16	Оценка параметров. Свободный дебит газоконденсатной скважины.	2
	Уравнения фильтрации многокомпонентной смеси двух несжимаемых	
	жидкостей. Уравнения сохранения масс фаз и объема смеси.	
	Итого:	34

5. Перечень примерных тем курсовой работы /проекта

Курсовая работа не предусмотрена.

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю):

- 1. Методические указания к самостоятельной работе и контрольной работе студентов по дисциплине «Гидромеханика многофазных сред»
- 2. Методические указания к практическим занятиям по дисциплине «Гидромеханика многофазных сред»
- 3. Методические указания к выполнению расчетно-графической работы по дисциплине «Гидромеханика многофазных сред»
- 4. Методические указания к выполнению контрольной работы по дисциплине «Гидромеханика многофазных сред»

7. Фонд оценочных средств

Фонд оценочных средств является компонентом ОП, разрабатывается в форме отдельного документа и включает в себя критерии оценивания сформированности компетенций на различных этапах их формирования и процедуры оценивания.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля).

Основная литература:

- 1. Басниев, К. С.Подземная гидромеханика : учебник для вузов / К. С. Басниев, И. Н. Кочина, В. М. Максимов. Москва : Недра, 1993. 416 с. [Электронный ресурс] // URL: http://www.iprbookshop.ru/16594.html
- 2. **Басниев, К. С.** Нефтегазовая гидромеханика : учеб. пособие для вузов / К. С. Басниев, Н. М. Дмитриев, Г. Д. Розенберг. Москва ; Ижевск : Ин-т компьютер. исслед., 2003. 480 с. : ил. (Современные нефтегазовые технологии). ISBN 5-93972-258-X : 305-01.33 *Б* 27(8 экземпляров)

Дополнительная литература:

1. Трубопроводный транспорт нефти и газа : учеб. пособие для вузов / Р. А. Алиев, В. Д. Белоусов, А. Г. Немудров [и др.]. - 2-е изд., перераб. и доп. - Москва : Недра, 1988. - 368 с. : [Электронный ресурс] Доступ из локальной сети Мурман. гос. техн. ун-та. URL: https://lib/mstu.edu.ru

2. Рудин, М. Г. Краткий справочник нефтепереработчика / М. Г. Рудин, А. Е. Драбкин. - Ленинград : Химия, 1980. - 328 с. :. [Электронный ресурс] локальной сети Мурман. гос. техн. ун-та. URL: https://lib/mstu.edu.ru

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля):

1. ЭБС «IPRBooks» (Лицензионный договор № 3768/18 от 15.03.2018 г. на оказание услуг по предоставлению доступа к электронно-библиотечной системе «IPRbooks» Исполнитель ООО «Ай Пи Эр Медиа») - http://www.iprbookshop.ru

10 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем:

- 1. Операционная система Microsoft Windows Vista Business Russian Academic OPEN, лицензия № 44335756 от 29.07.2008 (договор №32/379 от 14.07.2008)
- 2. Офисный пакет MicrosoftOffice 2007 RussianAcademicOPEN, лицензия № 45676388 от 08.07.2009 (договор 32/224 от 14.07.2009)
- 3.Офисный пакет MicrosoftOffice 2010 RussianAcademicOPEN, лицензия № 47233444 от 30.07.2010 (договор 32/285 от 27.07. 2010)
- 4. Wolfram Mathematica Professional (Network Server, Network Increment) 8. x/9. x (сетеваяверсия), номерлицензии L3477-6735 от 20.11.2012 г. (договор 26/32/277 от 15.11.2012 г.)

Таблица7 - Материально-техническое обеспечение дисциплины (модуля)

таолиц	<u>а / - Материально-техническое обеспе</u>	чение дисциплины (модуля)				
$N_{\underline{0}}$	Наименование специальных	Оснащенность специальных помещений и				
Π ./ Π .	помещений и помещений для	помещений для самостоятельной работы				
	самостоятельной работы					
1.	249 Н Учебная аудитория для	Укомплектовано				
	проведения занятий лекционного	специализированной мебелью и				
	типа, занятий семинарского типа,	техническими средствами обучения,				
	групповых и индивидуальных	служащими для представления учебной				
	консультаций, текущего контроля и	информации аудитории:				
	промежуточной аттестации					
	г. Мурманск, ул. Спортивная, д.11	– учебные столы – 14 шт.;				
	(корпус «Н»)	– доска аудиторная–1 шт.;				
		– мультимедиа – проектор EpsonEB-				
		X14G3000Lm – 1 шт.;				
		– ноутбук AquariusСmpNE 405 – 1шт.;				
		– экран с электроприводом Digis Electra				
		формат 1:1 (220*220) – 1 шт.;				
		Посадочных мест– 28.				
2.	255 Н Учебная аудитория для	Укомплектовано				
	проведения занятий лекционного	специализированной мебелью и				
	типа, занятий семинарского типа,	техническими средствами обучения,				
	групповых и индивидуальных	служащими для представления учебной				
	консультаций, текущего контроля и	информации аудитории:				
	промежуточной аттестации					
	г. Мурманск, ул. Спортивная, д.11	– учебные столы –19 шт.;				
	(корпус «Н»)	доска аудиторная— 1 шт.;				
		– мультимедиа - проектор Toshiba				
		ХС2000 – 1 шт.;				
		– Hoyтбук Aquarius Cmp NE405– 1шт.;				
		1 1 1				

		– экраннаштативеProjectaProView
		180х180 –1шт.;
		Посадочных мест- 38.
3.	242Н Специальное помещение для	Укомплектовано
	самостоятельной работы	специализированной мебелью и
	обучающихся кафедры МНГД	техническими средствами обучения,
	г. Мурманск, ул. Спортивная, д.11 (корпус «Н»)	оснащено компьютерной техникой:
		 учебные столы – 8 шт.;
		 доска аудиторная— 1 шт.;
		– ПК DEPO Neos 230с возможностью
		подключения к сети «Интернет» и
		обеспечения доступа в электронную
		информационно-образовательную среду
		университета— 7 шт.;
		Посадочных мест– 16.
4.	413 В Специальное помещение для	Укомплектовано
	самостоятельной работы	специализированной мебелью и
	обучающихся Института арктических	техническими средствами обучения,
	технологий	оснащено компьютерной техникой:
	г. Мурманск, пр-т Кирова,2	– проектор EpsonEB-W39 – 1 шт.;
	(корпус «В»)	– интерактивная доска SmartBoardM600
		– 1 шт.;
		 компьютерная техника с возможностью
		подключения к сети «Интернет» и
		обеспечением доступа в электронную
		информационно-образовательную среду
		университета:
		 персональные компьютеры Asusi3-
		7100/DeepCoolTheta20 PWM – 9 шт.;
		– учебные столы – 5 шт.;
		Посадочных мест – 9.

Таблица 8 - Технологическая карта дисциплины «Гидромеханика многофазных сред» (промежуточная аттестация – «зачет с оценкой»), очная форма обучения

No	Контрольные точки	Зачетное		График					
		количестн	во баллов	прохождения					
		min	max	(недели сдачи)					
	Текущий контроль								
1.	Посещение и работа на лекциях (9 лекций)	По расписанию							
	Нет посещений -0 баллов, (1 лекция) 8% -2 балл; (2	2 лекции) 15	5 % - 5 балл	ла; (3 лекции) 23%					
	- 6 балла; (4 лекции) 50% -10 баллов; (5 лекций) - 40	% - 12 балл	юв, (5 лекі	ций) - 55% -15					
	баллов; (6 лекций) –62 % - 17 баллов; (9 лекций) – 1	00 % - 27 ба	аллов;						
2.	Практические занятия/семинары (17 занятий)	16	34	По расписанию					
	Каждая практическая работа/индивидуальное задан	ие в срок –	2 балла, не	е в срок – 1,5					
	балла.								
3.	Контрольная работа	10	16	Последовательно					
				в срок					
	Выполнение 1 контрольной работы на 51% - 10 балл	10в, на 75%	- 13 балло	в, на 100% - 16					
	баллов.								
	Для допуска к сдаче экзамена обязательно выполнен	ние контрол	іьной рабо	ты.					
4.	Расчетно-графическое задание	18	23	Зачетная неделя					
	Выполнение РГР в срок – 23 балл, сдача работы по	истечении	назначенн	ого срока – 18					
	баллов								
	ИТОГОВЫЕ БАЛЛЫ ПО ДИСЦИПЛИНЕ	min -60	max-100						
Шь	сала баллов для определения итоговой оценки:								
91 -	- 100 баллов - оценка «5»,								

- 81-90 баллов оценка «4»,
- 70-80 баллов оценка «3»,
- 69 и менее баллов оценка «2»

Итоговая оценка проставляется в экзаменационную ведомость и зачетку обучающегося.